Occurrence and transfer of pathogens from the production environment to leafy greens grown in controlled environment agriculture

Contact

Ana Allende, PhD **CEBAS-CSIC**, Spain aallende@cebas.csic.es

Authors Maria I. Gil (Co-PI), Pilar Truchado (Co-PI)

Summary

Production of leafy greens in controlled environment agriculture (CEA) has significantly increased over the last few years. These protected systems promote the efficient production of crops in an environmentally friendly way. But they are not inherently safer than open systems, as contamination can occur through different production practices and procedures that introduce hazards into the environment. Little is known about the likelihood of Listeria monocytogenes and Salmonella serovar persistence in CEA systems. The main benefit of this project will be the acquisition of sciencebased knowledge to help develop risk-based preventive measurements that fulfill current FDA requirements and recommendations for CEA growers to reduce potential hazards such as Salmonella and L. monocytogenes.

Objectives

This project will generate practical knowledge on potential risk sources and transmission routes of pathogen contamination in CEA, as well as suitable corrective actions for implementing disinfection strategies. To accomplish this main goal, four objectives have been identified: 1. Risk-assessment of Salmonella serovars and L. monocytogenes contamination in CEA facilities: detection of potential sources and routes

- of contamination.
- 2. Establishment of genetic correlations of isolates to identify the distribution patterns of Salmonella and L. monocytogenes across different sources and routes of contamination.
- 3. Evaluation of foodborne associate traffic patterns using abiotic surrogates in indoor production environment to leafy greens.
- 4. Assessment of the efficacy of practical and feasible sanitation strategies implemented in CEA facilities against Salmonella and L. monocytogenes contamination.

Methods

This project is specifically designed to develop a keen understanding of potential sources and routes of contamination as well as the identification of effective sanitation procedures and sampling plans. Two technology-advanced CEA systems will be characterized in three environmental monitoring (EM) samplings. About 300 samples will be tested for the detection of Salmonella serovars and L. monocytogenes and enumeration of

Project funding dates

Acknowledgements

Support provided by Juan A. Tudela and the technicians involved in the project (Silvia Andújar, Natalia Hernández, Diego and Virginia Serrano) is highly appreciated. The collaboration of the industrial partners is also recognized.

January 1, 2023 – December 31, 2024

Methods (continued)

Listeria spp. based on standard methods. Characterization of the isolates using WGS will allow the identification of transient or persistent L. monocytogenes isolates. Special attention will be given to enhance the detection of potential pathogenic isolates using different enrichment steps and selective culture media. The use of abiotic surrogates will allow the evaluation of potential distribution of contamination patters within a CEA operation. (Figure 1)

Results to Date

The first EM sampling has been performed in one of the technology-advanced CEA systems after harvest in the first week of May (Figures 2 and 3). Table 1 lists the samples taken during the EM. The samples are being analyzed for the detection of Salmonella serovars and L. monocytogenes and enumeration of Listeria spp. Considering that L. monocytogenes and Salmonella are poor competitors against routine background microflora, two different enrichment steps and two selective media have been selected for Salmonella serovars, and in the case of L. monocytogenes the confirmation of potential isolates will be performed in two selective culture media. The analyses are in progress.

Benefits to the Industry

The project aims to acquire science-based knowledge to help growers in developing risk-based preventive measurements. The output of the project will help to identify:

- to the product
- Traffic patterns associated with cross-contamination
- Efficacy of sanitation strategies

The impact of this new knowledge will be translated into:

- Development of an improved set of guidance based on evidence-based practice for the industry,
- Achievement of food safety standards of excellence in CEA facilities for growing leafy greens,
- Establishment of contamination patterns within a CEA facility, and
- Selection of the most efficient sanitizing treatments to eliminate foodborne pathogens from CEA facilities.

of the project

• Contamination niches with Salmonella serovars and L. monocytogenes and transference pathways from contact or adjacent surfaces

• Persistent and transient isolates through genetic correlations

CPS RESEARCH SYMPOSIUM RESEARCH IN PROCESS

Figure 3. Sampling in CEA facility A

