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A B S T R A C T   

Vegetables are globally associated with a considerable number of foodborne outbreaks caused by viral infections, 
specifically human norovirus. In fresh produce industry, washing represents a critical step for food safety as 
process wash water (PWW) needs to be maintained at appropriate microbial quality to prevent water-mediated 
cross-contamination. This study aimed to explore the disinfection efficacy of chlorine (free chlorine, FC), chlorine 
dioxide (ClO2) and peracetic acid (PAA) in PWW against infectious human norovirus and Tulane virus (TV). First, 
we tested the extent of TV inactivation in baby leaf, bell pepper, and vegetables mix PWW and monitored the 
viral decay by cell culture. Then, inactivation kinetics were defined for infectious human norovirus exposed to 
FC, ClO2 and PAA in baby leaves PWW using the human intestinal enteroids (HIE) system. Finally, kinetic 
inactivation models were fitted to TV reduction and decay of sanitizers to aid the implementation of disinfection 
strategies. Results showed that >8 log10 human norovirus and 3.9 log10 TV were inactivated by 20 ppm FC 
within 1 min; and by 3 ppm ClO2 in 1 min (TV) or 5 min (norovirus). PAA treatment at 80 ppm reduced ca. 2 
log10 TV but not completely inactivated the virus even after 20 min exposure, while 5 min treatment prevented 
norovirus replication in HIE. TV inactivation in PWWs was described using an exponential decay model. 

Taking these data together, we demonstrated the value of applying the HIE model to validate current oper
ational limits for the most commonly used sanitizers. The inactivation kinetics for human norovirus and TV, 
along with the predictive model described in this study expand the current knowledge to implement post-harvest 
produce safety procedures in industry settings.   

1. Introduction 

Human noroviruses are the leading cause of sporadic cases and 
outbreaks of acute gastroenteritis worldwide and the most common 
cause of foodborne illness in the United States (Ahmed et al., 2014; 
Burke et al., 2021; Havelaar et al., 2015). In Europe, human noroviruses 
are the third most frequently reported causative agent of outbreaks 
being responsible for the 6.3 % of total foodborne cases (EFSA and 
ECDC, 2022). Noroviruses are transmitted to humans through multiple 
routes, even though the fecal-oral route is the primary pathway of dis
ease transmission (Ahmed et al., 2014; De Graaf et al., 2016; Ramani 

et al., 2014). Moreover, the low infectious dose, the high shedding 
concentration, the resistance to common disinfectants (e.g., alcohols, 
QUATs, chlorine, ozone) and the environmental stability facilitate viral 
spread through droplets, contaminated food, water, and fomites (Glass 
et al., 2009; Kotwal and Cannon, 2014; Lopman et al., 2012; Randazzo 
et al., 2018; Teunis et al., 2008). 

The 2021 EFSA report informed 19 norovirus foodborne outbreaks 
(FBOs) associated with “crustaceans, shellfish, molluscs and products 
thereof” accounting to 147 reported cases, and 3 norovirus FBOs asso
ciated with “vegetables and juices and other products thereof” with 263 
cases (EFSA and ECDC, 2021). In Europe, norovirus was associated with 
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the 54.3 % number of cases related to contaminated fresh produce 
(Aiyedun et al., 2021). Moreover, the increased consumption of fresh 
produce in Europe and North America, as measures of improved diets, 
correlates with the increased fresh produce-related outbreaks of mi
crobial origin. Specifically, produce may be contaminated by norovirus 
through several exposure pathways being irrigation water and infected 
handlers the most commonly reported sources (Chandrasekaran and 
Jiang, 2018; Li et al., 2018; Souza et al., 2020; Truchado et al., 2021a,b). 
The enhanced risk of contamination in those food items is also explained 
by the presence of histo-blood group antigens (HBGA)-like carbohy
drates described in oysters and vegetables to which norovirus specif
ically binds (Esseili et al., 2019; Le Guyader et al., 2006; Xiang et al., 
2016; Zhang et al., 2020). 

While generic measures to disrupt norovirus transmission rely on 
adhering to hand hygiene practices, enhancing environmental cleaning 
and excluding sick staff from work (Barclay et al., 2014; Bhatta et al., 
2020), in produce industry settings, water used for handling and pro
cessing fresh fruit and vegetables is critical to prevent contamination of 
the final product (JEMRA, 2021). A huge consumption of water (2 to 11 
m3/t of vegetables) is typically used for washing, rinsing, or conveying 
produce and it must be safe and of adequate sanitary quality (CFR, 2022; 
Manzocco et al., 2015). Based on the European Commission Notice (EC, 
No. 2017/C 163/01), water used for final washing of fresh fruit and 
vegetables during postharvest processing operations should be potable 
(intended for human consumption, Council Directive 98/83/EC) or 
adequately cleaned to prevent contamination. During the working day 
the quality of the process water deteriorates mostly due to the accu
mulation of organic matter (e.g. soil, dust and microorganisms) coming 
from the produce (Manzocco et al., 2015). This is why the microbial 
quality of process wash water (PWW) needs to be maintained to prevent 
pathogen (e.g., Salmonella, pathogenic Escherichia coli, Listeria mono
cytogenes, human norovirus) cross-contamination of the produce during 
washing (Gombas et al., 2017; Maffei et al., 2017). The commercial 
sanitizers most commonly used to maintain the microbiological quality 
of PWW include sodium hypochlorite (FC, free chlorine), chlorine di
oxide (ClO2) and peroxyacetic acid (PAA), which operational limits have 
been either recommended or enforced by scientific studies, guidelines 
and regulations. Targeting the residual concentration of 20 mg/L chlo
rine (Tudela et al., 2019), 80 mg/L PAA (21 CFR173.315, 2012), or 3 
mg/L ClO2 (FDA, 2019) has been claimed as effective to maintain the 
microbial quality of PWW. However, maintaining sufficient sanitizer 
residuals is a challenge because of variable characteristics of PWW (e.g., 
organic load, pH, temperature, and reaction time) that affect the final 
efficacy of the disinfection process (Banach et al., 2015; Gil et al., 2009; 
Srinivasan et al., 2020). Moreover, there is the need to specifically 
evaluate the efficacy of sanitizers against viral contamination, also 
because disinfection of virus is likely more variable and less effective 
compared to bacteria (Lin et al., 2020). In addition, research on the 
efficacy of sanitizers to inactivate human norovirus in PWW has been 
stymied by the inability to propagate it in cell lines (Estes et al., 2019). 

Despite the recent development of an in vitro model based on stem 
cell-derived human intestinal enteroids (HIEs) for human norovirus 
replication (Costantini et al., 2018; Estes et al., 2019; Ettayebi et al., 
2016), its complexity has limited its extended experimental application, 
especially in food and environmental virology. Thus, cultivable surro
gates are commonly used to infer inactivation of the actual pathogen. 
Among others, Tulane virus (TV) is considered an appropriate surrogate 
for human norovirus because it recognizes HBGAs as cellular receptors 
(similar to human norovirus), and it is genetically more related to 
human norovirus than other caliciviruses (Cromeans et al., 2014; Farkas, 
2015; Polo et al., 2018). The presence of HBGA-like carbohydrates on 
produce that act as specific binding moieties requires special attention 
when investigating viral contamination on this commodity as described 
for lettuce (DiCaprio et al., 2012; Esseili et al., 2019; Xiang et al., 2016). 
Moreover, TV has been indicated as an accurate surrogate model for 
studying inactivation profiles of human norovirus given its resistance to 

free chlorine (Cromeans et al., 2014). 
In this study, we investigated the inactivation of TV in response to 

FC, ClO2 and PAA treatments at recommended operational limits for the 
disinfection of different types of PWW (i.e. baby leaf, bell pepper and 
vegetables mix). Moreover, inactivation kinetics of infectious human 
norovirus were determined in baby leaf PWW using the novel human 
intestinal enteroids system. Finally, infectivity data sets were used to 
develop a predictive inactivation model for the implementation of 
disinfection strategies in produce industry settings. 

2. Materials and methods 

2.1. Viruses and cell lines used in the study 

Human norovirus and TV inactivation in PWW were assessed by 
determining viral replication on HIE and LLC-MK2 cells, respectively. 

Human GII.4 Sydney[P16] norovirus-positive fecal sample was 
provided by Prof. Buesa (University of Valencia, Spain). A 10 % fecal 
filtrate was prepared in phosphate buffered saline (PBS) and stored at 
− 80 ◦C in aliquots until the time of testing. 

Three-dimensional HIE derived from human jejunal biopsy (J2 cell 
line) were provided by Prof. Mary K. Estes (Baylor College of Medicine, 
Houston, TX). Undifferentiated 3D HIEs and differentiated monolayers 
were maintained and produced as originally described by Ettayebi et al. 
(2016), Zou et al. (2019) and the modifications included in Carmona and 
Randazzo (2023). The commercial IntestiCult™ Organoid Medium 
Human media (STEMCELL Technologies Inc.) was used for maintaining 
HIE (Ettayebi et al., 2021). To determine human norovirus infectivity, 
RT-qPCR was used to quantify the amount of norovirus RNA from input 
virus and from HIE monolayers at 1 h post-infection (hpi) and at 48 hpi. 
To this end, two sets of 96-well plates with 100 % confluent 4–6 day-old- 
differentiated HIE monolayers were inoculated in triplicate for each 
sample and incubated at 37 ◦C for 1 h. After the inoculum was removed, 
monolayers were washed twice with Complete Media without Growth 
Factors (CMGF− ) and 100 μL of Organoid Medium Human containing 
500 μM sodium glycochenodeoxycholate was added to each well. For 
each set of infections, one 96-well plate was immediately frozen at 
− 80 ◦C (1 hpi) and the second plate was incubated at 37 ◦C and 5 % CO2 
for 48 h and then frozen (48 hpi). 

RNA was extracted from 100 μL sample using the Maxwell® RSC 
Instrument (Promega) and the Maxwell RSC Pure Food GMO and 
authentication kit (Promega) and eluted in 100 μL buffer. RNA was 
detected using the set of primers and probe recommended by the ISO 
15216-1 (2017) and the RNA UltraSense One-Step quantitative RT-PCR 
system (Invitrogen) on LightCycler 480 instrument (Roche Diagnostics, 
Germany). Ten-fold serial dilutions of synthetic gBlock gene fragments 
(IDT) were included to quantify the RNA into genome equivalents (y =
− 3.56x + 40.664, R = 0.997). Positive and negative amplification 
controls were also included in each run. The limit of detection (LoD) 
resulted 8.97 gc/well for norovirus. 

Tulane virus provided by Prof. Farkas (Louisiana State University, 
LA, US) was grown in LLC-MK2 cells (ATCC CCL-7) cultured in Opti- 
MEM (Gibco Life Technologies) supplemented with 2 % FBS and 1 % 
antibiotic cocktail (STR/Pen; Life Technologies) as described previously 
(Cromeans et al., 2014; Esseili et al., 2018), with the modifications re
ported in Randazzo et al. (2020) for titration. LLC-MK2 cells were used 
since a typical cytopathic effect could be observed within 3–5 days after 
TV infection (Farkas et al., 2008). Briefly, viral titer was determined by 
the 50 % tissue culture infectious dose (TCID50) assay inoculating 20 μL 
of 10-fold serial dilutions of TV prepared in PBS on eight wells with 
70–80 % confluent LLC-MK2 monolayers in 96 well plates. After incu
bation for 1 h at 37 ◦C, 180 μL Opti-MEM was added. After 3–5 days, 
cells showing cytopathic effect (CPE) were enumerated. The LoD 
resulted 15.8 TCID50/mL. 
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2.2. Produce wash water and disinfection experiments 

PWW samples were collected in the framework of a recent moni
toring study involving three processing facilities (Cuevas-Ferrando 
et al., 2021; Sanchez et al., 2022). Specifically, PWW was collected from 
tanks used for washing of baby leaves (green and red pigmented baby 
romaine, rocket, baby spinach and lamb lettuce), bell peppers and a 
vegetables mix (tomato, pepper, cucumber, and onion mix). The pro
duce:water ratio is indicated in Table 1. Two liters of water were 
collected from the washing tanks 4–5 h after production started and 
transferred to laboratory while maintained at 4 ◦C until used for the 
experiments. 

PWW samples were characterized for physiochemical parameters 
(Table 1). Specifically, temperature, pH, oxidation-reduction potential 
(ORP), and electric conductivity (EC, μS/cm) were determined by a pH 
and redox multimeter (Crison, Barcelona, Spain), chemical oxygen de
mand (COD) was determined by Spectroquant NOVA 60 photometer 
following a standard photometric method, and turbidity was measured 
by a Turbiquant 3000R turbidimeter (Merck, Madrid, Spain). 

Sodium hypochlorite (free chlorine, FC), ClO2 (AGRI DIS®, STC S.L. 
U., Spain) and PAA (Citrocide® Plus, Citrosol, Spain) were tested as 
disinfectants against human norovirus and TV by performing batch scale 
experiments. A static experimental design was adopted in the study, 
without further addition of PWW to the system (Gómez-López et al., 
2015). Initially, 200 mL of baby leaves, bell peppers and vegetables mix 
PWW were placed in sterile chlorine demand-free beakers and inocu
lated with TV at 5.6 ± 0.2 log10 TCID50/mL. The actual concentration in 
the PWWs resulted to be 3.9 ± 0.5 logs, as it was determined in the 
PWWs at time 0. Then, FC, ClO2 and PAA stock solutions were added to 
target the operational limits of 20, 3, and 80 ppm, respectively (21 
CFR173.315, 2012; USDA, 2016; Tudela et al., 2019). 

PWW were kept at 4 ◦C and continuously stirred to mimic the 
operating conditions of the commercial produce processing lines (e.g., 
water temperature and turbulence) (Gombas et al., 2017; Weng et al., 
2016). Viral inactivation and concentration of disinfectants monitored 
at 0, 1, 5, 10, 15, and 20 min. 

FC, ClO2 and PAA concentrations were monitored using Kemio® 
(Palintest, Gateshead, UK) analytical platform based on chro
noamperometry and the corresponding sensors (KEM21CLO, 
KEM21CDX, and KEM21PAA, respectively). 

To determine viral inactivation, 1 mL aliquots were collected at each 
time point and neutralized by mixing at 1:10 ratio with Opti-MEM 
supplemented with 10 % fetal bovine serum (FBS). 

Based on TV results, baby leaves PWW was selected as representative 
matrix to study the inactivation kinetics of human norovirus exposed to 
targeted operational limits of FC (20 mg/L), ClO2 (3 mg/L), and PAA 
(80 mg/L) determined using the HIE system. Experiments were con
ducted as detailed for TV, inoculating human norovirus at 9.0 ± 0.2 
log10 genomic copies (gc)/mL into 200 mL PWW and collecting aliquots 
at 0, 1, 5, 10, 15, and 20 min time points. CMGF− supplemented with 
500 μM sodium glycochenodeoxycholate and 10 % FBS was used to 
neutralize the disinfectants. 

A neutralization control was included in all experiments for both 
viruses. 

2.3. Model development 

TV infectivity data were used for predictive inactivation modelling. 
Experimental data from specific combinations of PWW and water 
disinfectant types were selected for survival modelling according to the 
availability of enough data points to perform the fitting process. The 
type of sanitizer influenced the type of data obtained in each trial. Data 
were fitted using an exponential decay model defined by the equation: 

y = a − (a − b)⋅e− ct  

where y is viral infectivity (log S), a is the smallest value that y can take, 
which matches with the value associated to the horizontal asymptote of 
the curve; b is the value of y at t = 0; t is time; c is a value proportional to 
the relative rate of y change with respect to the increase of t, and t is the 
time. 

2.4. Statistical analysis 

All data were compiled from three independent experiments with 
three technical replicates for each experimental condition. Significant 
differences in mean infectivity were determined by using one-way 
ANOVA followed by Dunnett’s multiple comparisons test. Differences 
in means were considered significant when the p was <0.05. GraphPad 
Prism version 8 (GraphPad Software) software was used for statistical 
analyses and data representation. 

3. Results and discussion 

3.1. Use of chemical sanitizers for viral disinfection of produce wash 
waters 

Our study shows that >8 log10 human norovirus and >3.9 log10 TV 
are inactivated by 20 ppm FC (LoD = 15.8 TCID50/mL for TV, and 8.97 
gc/well for norovirus) within 1 min; and by 3 ppm ClO2 in 1 min (TV) or 
5 min (norovirus). In addition, PAA treatments at 80 ppm reduced ca. 2 
log10 TV but not completely inactivated the virus even after 20 min 
exposure, while 5 min treatment prevented norovirus replication in HIE. 

Results showed that 20 ppm FC inactivated >3.9 log10 TV regardless 
of the type of PWW assayed (Fig. 1), and a similar kinetic resulted for 
infectious human norovirus in baby leaves PWW from replication ex
periments in HIE (Fig. 2). The antiviral effect of FC was likely instan
taneous as none infectious viral particle was detected after 1 min 
(Figs. 1A–C, 2). 

With regard to ClO2 disinfection, our original data indicates that ca. 
3 ppm ClO2 completely inactivated TV within 1 min in all types of tested 
PWW (Fig. 1D–F), while human norovirus replication in HIE was pre
vented after 5 min of treatment, indicating >8 log10 inactivation (Fig. 2). 

Following PAA treatment for 20 min, infectious TV was recovered in 
all types of PWWs, even though at concentrations bordering the limit of 
detection and only for some of the technical replicates (Fig. 1G–I). More 
in detail, PAA reduced TV titer by ca. 2 log10 TCID50/mL in baby leaves 
(Fig. 1G) and bell pepper (Fig. 1H) PWWs after 15 and 20 min, respec
tively, while a similar reduction was observed in vegetables mix PWW 
after 5 min (Fig. 1I). On the contrary, infectious human norovirus was 
recovered after 1 min PAA treatment in baby leaves PWW, while viral 
replication in HIE was completely prevented for longer exposure times 

Table 1 
Physiochemical characterization of produce wash water. Data represent mean ± SD of three measurements.  

PWW Produce: water ratio pH ORP EC COD Turbidity Temperature 

Baby leaves  1.7 7.8 ± 0.1 755 ± 17 1499 ± 5 132 ± 1.0 19 ± 7 8 ± 2 
Bell pepper  120 3.8 ± 0.2 410 ± 39 765 ± 54 1496 ± 437 112 ± 67 14 ± 3 
Vegetables mix  10 7.3 ± 0.3 218 ± 51 879 ± 155 166 ± 16.7 19 ± 2 14 ± 1 

Abbreviations and units: PWW, produce wash water; ORP, oxidation-reduction potential (m/V); EC, electric conductivity (μS/cm); COD, chemical oxygen demand 
(mg/L); Turbidity (NTU, nephelometric turbidity unit); temperature expressed in Celsius degrees (◦C). 
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(Fig. 2). 
To our knowledge, this is the first report incorporating infectivity 

data of genuine human norovirus and a surrogate (TV) to evaluate the 
efficacy of sanitizers for PWW disinfection. Human norovirus and TV 
demonstrated similar inactivation patterns for FC, while slight differ
ences were observed for ClO2 and PAA disinfection. Under the experi
mental conditions of this study, it seems that the human pathogen is 
more resistant to ClO2 and more sensitive to PAA treatment than the 
tested surrogate. However, it is difficult to make a direct quantitative 
comparison between the viruses due to the differences of the infectivity 
assays (e.g., amount of initial viral titer, dilutions used for cell in
fections, titration method and limit of detection). TV has been consid
ered one of the most accurate surrogates for human norovirus to 
evaluate the efficacy of sanitizers, and more recently TV infectivity was 

directly compared to human norovirus replication in the HIE model 
(Cromeans et al., 2014; Escudero-Abarca et al., 2022; Randazzo et al., 
2020). These studies concluded that the infectivity assays for human 
norovirus and TV performed similar for sodium hypochlorite inactiva
tion, but not for an antiviral plant extract (e.g., green tea extract). 

In order to comprehensively describe viral inactivation in PWW, 
important test variables should be considered in disinfection assays, 
such as type of water, type and concentration of sanitizers, contact time, 
experimental design (static vs continuous disinfection), type of viruses, 
and viral titration method. Unfortunately, a wide variety of experi
mental conditions has been used in the literature, making these results 
very difficult to compare across the different studies. Results obtained in 
the present work indicate that the effectiveness of the sanitizer is 
dependent on both the stability of the sanitizer concentration in the 

Fig. 1. Decay of 20 ppm FC, 3 ppm ClO2 and 80 ppm PAA and TV inactivation in baby leaves (A, D, and G), bell pepper (B, E, and H), and vegetables mix (C, F, and I) 
PWW. The mean concentration of sanitizers (violet lines) is plotted on the secondary y-axes, and TV load (red points) on the primary y-axes. Fitted exponential decay 
models for FC, ClO2, and PAA are plotted as blue continuous lines with confidence bands as dashed blue lines. Hollow symbols represent viral concentrations below 
the sensitivity limit of the cell culture assay (TCID50/mL, dashed red lines). For each time point, differences in viral load means were considered significant for *p <
0.05; ***p < 0.0001; ns, not significant compared with the nontreated sample at initial time point. Error bars indicate SDs. 

Fig. 2. Human norovirus inactivation in response to 20 ppm FC, 3 ppm ClO2 and 80 ppm PAA treatments in baby leaves PWW. Bars show replication of human 
norovirus in human intestinal enteroids at 1 (grey bars) and 48 (red bars) hours post-infection (hpi). Error bars indicate SDs. Differences in mean replication titers 
were considered significant for *p < 0.05. hpi, hours postinfection. Dashed lines indicate the limit of detection of the assay (8.97 gc/well). 
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water and the efficacy of the sanitizer to inactivate viruses under specific 
conditions (see Section 3.2). Similar findings have been previously 
described by Srinivasan et al. (2020), who indicated that maintenance of 
the residual concentration of the sanitizer is critical in controlling 
pathogen inactivation and preventing cross-contamination but this will 
depend on the stability of the sanitizer in the process water. 

Our results for viral sensitivity to chlorine are in general agreement 
with the results reported in previous studies (Costantini et al., 2018; 
Dunkin et al., 2017a,b; Fuzawa et al., 2019). Fuzawa et al. (2019) re
ported that TV lost its ability to bind to its receptor after exposure to FC 
at 29 ppm over 1 min, which is in line with our measurements. Dunkin 
et al. (2017a,b) observed 4 log10 MS2 infectivity reduction exposed to 
ca. 1.5 ppm FC within 3 min in whole-leaf and chopped romaine PWWs, 
while complete inactivation was not achieved in shredded iceberg PWW 
within 15 min. As well, human norovirus replication in the permissive 
HIE model has been reported to be completely prevented following FC 
treatment at ≥50 ppm (Costantini et al., 2018). In contrast, other studies 
found that FC concentrations lower than 500 ppm (Tian et al., 2013) or 
2000 ppm (Hirneisen and Kniel, 2013) did not inactivate TV in solution. 
The discrepancies could be most likely explained by the different 
experimental designs adopted and water characteristics. 

Regarding ClO2 disinfection, CT (concentration x time) values 
retrieved from the literature ranged from 0.06 to 10 ppm × min to 
achieve a 4 log10 enteric viral removal in several water matrices, 
including drinking and wastewater (Ge et al., 2021). Kingsley et al. 
(2014) reported that human noroviruses are resistant to 350 CT as 
resulted by molecular assays, which is notably higher than the ClO2 
inactivation observed of our study. However, the RNA titration does not 
quantitate the loss of virus infectivity (Shaffer et al., 2022), which has 
been done in our study. 

We observed TV and human norovirus resistance to PAA disinfec
tion. Fuzawa et al. (2020) also found that 10 ppm PAA for 30 min were 
needed to achieve a 2 log10 reduction in buffer solutions (equal to CT99 
= 300, where CT99 = 99 % reduction). The authors explain that such 
resistance might be due to the significant aggregation of TV in PAA 
solutions observed by transmission electron microscopy. It has been 
shown that viral aggregation protects virions from the effect of disin
fectants, especially with more reactive ones (e.g., chlorine) (Gerba and 
Betancourt, 2017; Mattle et al., 2011). In our case, this may prevent the 
optimal interactions between PAA and the surface area of TV virion, 
and/or the decrease of the PAA diffusion inside aggregated virions. We 
now report that higher PAA concentration of ≈80 mg/L (CT99 = 394) 
was not even sufficient to achieve a complete (≈2.7 log10) TV inacti
vation in PWW within 20 min. This hypothesis might not apply to 
human norovirus tested in the HIE model, since fecal suspensions were 
filtered before being inoculated in PWW, which may have facilitated the 
disaggregation of viral particles, making them more susceptible to 
disinfection. This could help explaining the higher sensitivity of human 
norovirus to PAA treatment compared to TV. 

We tested both viruses in PWW, which is a complex matrix (e.g., 
organic load), whereas experiments in suspension (oxidant demand-free 
buffer) provided different results. In oxidant demand-free buffer, Lim 
et al. (2010) reported that CT values of 0.314 and 0.247 were required 
for reducing 4 log10 MNV using FC and ClO2, respectively. These values 
are significantly lower than those applied in our study for either human 
norovirus or TV, and the difference might be explained by the diverse 
oxidant demand of the matrices. This hypothesis is also supported by 
Escudero-Abarca et al. (2022) findings on the variable susceptibility of 
TV and norovirus to sodium hypochlorite suspensions and an alcohol- 
based sanitizer applied at different conditions of soil load. Thus, our 
data in PWW with variable amount of organic load are relevant and 
predictive of real-world disinfection efficacy. 

This is the first study reporting on human norovirus inactivation in 
PWW by chemicals sanitizers using the HIE model. The HIE model 
allowed for the confirmation of successful neutralization (viral binding 
occurred at 1 hpi), as well as for norovirus inactivation exposed to 

sanitizers. To date, only few studies investigating chlorine inactivation 
of infectious human norovirus have been performed by means of 
controlled clinical trial (Keswick et al., 1985) or using the in vitro HIE 
system (Costantini et al., 2018; Escudero-Abarca et al., 2022). The 
clinical trial study found that adding 10 ppm of FC in drinking water 
failed to protect all volunteers from infection (Keswick et al., 1985), 
while 50 ppm FC was reported to prevent norovirus replication in the 
HIE model (Costantini et al., 2018). 

Our data do not provide quantitative data on the degree of norovirus 
inactivation, which is a limitation of the method yet to be overcome. 
Moreover, the complexity and the cost associated to the human nor
ovirus replication in HIE, along with the limited amount of positive fecal 
samples restricted the number of inactivation experiments and biolog
ical/technical replicates. Indeed, the experimental design included 
several dilution steps such as the spiking of human norovirus stool 
suspensions in a large volume of PWW (200 mL), the neutralization 
needed to block sanitizers effect and avoid cytotoxicity, and the dilution 
with infectious media to infect HIE. As a consequence, a high input of 
infectious virus is required to carry out those experiments which is not 
always available. It is important to note that our experiments were 
performed using human norovirus GII.4 Sydney[P16] strain, which has 
been reported to replicate in the HIE at high rates compared to other 
genogroups/genotypes (Costantini et al., 2018; Ettayebi et al., 2016). 
However, it has been demonstrated by molecular methods that nor
oviruses exhibit genogroup-dependent resistance to FC and PAA (Dun
kin et al., 2017a,b). Thus, survival models describing human norovirus 
inactivation in response to PWW sanitation, specifically adjusted for 
different genogroups infectiousness, should be considered in future 
works. 

Studies exploring viral inactivation in a continuous washing system, 
in which water, produce and sanitizers are continuously introduced to 
the system, might provide a more relevant information for real-world 
scenarios, and preliminary results have been recently published using 
MS2 phage or Escherichia coli (Abnavi et al., 2021; Falcó et al., 2023). 
However, such studies are difficult to be performed using genuine 
human norovirus, and surrogates will be likely used to build scientific 
evidence in these complex disinfection systems. 

It is remarkable that several authors reported that concentrations of 
sanitizers (10–25 ppm FC, 3 ppm ClO2, and 80 ppm PAA) similar to 
those used in this study effectively inactivated foodborne bacterial 
pathogens (e.g., Shiga-toxigenic E. coli, Salmonella enterica, and Listeria 
monocytogenes) in PWW (Gu et al., 2020; Francisco López-Gálvez et al., 
2020; Truchado et al., 2021b). Ultimately, our data and those of others 
on bacterial inactivation, provide compelling evidence that FC and ClO2 
unlike PAA at recommended operational limits might represent effective 
mitigation strategies to effectively prevent microbial cross- 
contamination in PWW. 

3.2. Decay of sanitizers in PWW 

The effectiveness of sanitizers is dependent upon many factors such 
as concentration of agent, reaction time, temperature, and organic load 
(Lin et al., 2020; Srinivasan et al., 2020). Thus, a proper concentration of 
sanitizers (e.g., 10 to 25 ppm FC, 30 to 80 ppm PAA) should be targeted 
and maintained to ensure an effective washing process (Gombas et al., 
2017). 

In our study, we monitored the decay of sanitizers which differed 
among the PWW (Fig. 1). Specifically, FC sharply decreased in baby 
leaves PWW after 5 min, but not in bell peppers and vegetables mix 
PWW. On the contrary, ClO2 completely decayed in bell peppers and 
vegetables mix PWWs, while residual concentrations (<1 mg/L) were 
measured after 20 min in baby leaves. PAA showed a marked decay in 
bell pepper PWW but not in baby leaves PWW (Fig. 1). The difference in 
the decay of sanitizers could be related to the varied physiochemical 
composition of PWW (e.g., EC, COD, turbidity) (Table 1), even though 
resulting TV inactivation patterns were similar for a given sanitizer 
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tested in different PWW (Fig. 1). Most of the inactivation has been 
observed within the first minute of contact time, when the highest 
concentration of sanitizers was present in the PWW. This most likely is a 
result of the static experimental design adopted in the study, in which 
additional PWW with higher organic loads was not added to the system 
(Gómez-López et al., 2015). Also, this might explain the similar patterns 
observed for each sanitizer in different types of PWW. 

Overall data on the decay of sanitizers and residues are relevant for 
implementing effective sanitation management and avoiding the pres
ence of disinfection by-products (Tudela et al., 2019). 

3.3. Model describing Tulane virus inactivation in PWW 

Modelling approaches for microbiological food safety have evolved 
to characterize the inactivation of microorganisms as a function of 
relevant intrinsic and extrinsic factors (Allende et al., 2022). The model 
was fit to data presented in Fig. 1 and selected on the bases of its level of 
adjustment to the experimental dataset. The estimated model parame
ters are presented in Table S1. 

An exponential decay model was used to explain the TV inactivation 
in PWW exposed to FC and ClO2 (Fig. 1A–F) on one hand, and PAA 
(Fig. 1G–I), on the other hand. The parameterisation selected for the 
inactivation of TV by FC and ClO2, describes the rapid inactivation of TV 
by these sanitizers in PWW even at low concentrations, indicating the 
high oxidative capacity of tested disinfectants (Fig. 1). Moreover, as 1 
min time points were below LoD, TV inactivation kinetic can even be 
faster than the one described by the model, which should finally be 
interpreted as conservative. 

In the case of PAA, the parameterisation selected indicates 2.3 and 
2.0 log10 TV inactivation in pepper and vegetables mix PWW, which 
makes this sanitizer less suitable to maintain the microbiological quality 
of the water (Fig. 1G–I). 

Survival kinetics models of the Chick-Watson-Hom’s kind have been 
reported to reflect the biological response in static disinfection (Peleg, 
2021). As an example, Abnavi et al. (2021) modelled the disinfection 
kinetics of E. coli in batch- and continuous-wash processes taking into 
account the loss of efficacy of FC in the presence of organic load. Also, 
Dunkin et al. (2017a,b) reported that the incomplete gamma Hom 
function effectively represents MS2 infectivity reduction in whole leaf 
and shredded iceberg PWWs sanitized with FC, while Hom-Power law 
model was the best fit for chopped romaine PWW. The reported data 
reveals that a 3-log10 reduction of infectious virions is achieved at CT 
values of <0.1 for MNV and 2.5 for MS2 in whole-leaf wash water. As 
well, the model-predicted CT value of 22 for 3-log10 gene copy reduction 
of human norovirus GII in whole-leaf wash water, which has been 
demonstrated in this study to be sufficient to prevent the replication of 
9-log10 infectious virions in HIE. However, this data should be consid
ered with caution as the infectious:genomic copies ratio for human 
norovirus has not been defined yet. These mechanistic models use 
mathematical expressions that best describe the inactivation activity of 
biocides. In this study a different approach was followed using a sta
tistical model which applied an exponential mathematical expression to 
describe the viral inactivation. The inactivation processes studied in this 
study is a nonlinear phenomenon that is appropriately modelled by a 
nonlinear regression equation. Moreover, the selection of a nonlinear 
regression model versus mechanistic models is mostly due to the rele
vant attributes as parsimony, easy interpretation, prediction, and flexi
bility of nonlinear regression models, which can adopt a variety of 
shapes using data-driven methods of successive approximations (Bates 
and Watts, 2007). 

On an all-embracing perspective, researchers, risk assessors, risk 
managers and food safety agencies (e.g., European Food Safety Au
thority, EFSA) indicate the lack of data as a factor that limits risk as
sessments. Our study provides a modelling approach based on 
experimental dataset that could be combined with a wide range of risk 
assessment tools to provide appropriate risk mitigation and control 

options. Such expanded models should account for the effects of mul
tiple factors and determining their parameters/coefficients, either 
experimentally or in simulations, would be the priority of future 
research. 

4. Conclusions 

In the present study, we define viral inactivation kinetics of infec
tious human norovirus and predictive models of TV in response to 
chlorine, chlorine dioxide and peracetic acid treatments in process wash 
water. The increase of human norovirus RNA genomic copies following 
replication on human intestinal enteroids served as a robust and defin
itive approach -compared to the RNA detection by RT-qPCR alone- to 
support the effectiveness of FC and ClO2 applied in PWW at the opera
tional limits specifically defined for each processing line by the food 
business operators. 

Our data are of interest for implementing produce industry practices, 
specifically washing processes, where targeting effective sanitizer re
siduals to prevent viral cross-contamination could be extremely chal
lenging. The inactivation kinetics and the predictive model presented in 
this study expand the current knowledge to improve produce food 
safety. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijfoodmicro.2024.110601. 
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